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EXPERIMENTAL AND THEORETICAL RESULTS ON HEAT TRANSFER AT

THE ANGLE OF ATTACK OF SWEPT WINGS IN HYPERSONIC FLIGHT

Jacques Valensi, Roger Michel, and Daniel Guffroy

ABSTRACT Y, 95/

An experimental and theoretical study of cooling and heat
transfer at the leading edge of hypersonic wings at Mach num-
bers 4, 7 and 10 and at different angles of attack has led
to the following conclusions: An spprecisble rise in Mach
number and pressure is observable at high speed along the
leading edge of & real wing in a region influenced by the
interaction of the forebody and the leading edge. At this
rise there is a detectable variation in the heat transfer to
the surface. 1In order to predict the heat transfer to the
surface it is necessary to account for the influence of
pressure gradients in the development of the three dimensional
boundary layer. Application of the principle of prevalence
permits a method of calculation which for large angles leads
to results in agreement with experiment. The experiments
made at high Mach number show an influence of entropy gradient

due to the curve of the shock wave which causes a variation

in the stagnation pressure at the front of the boundary 1ayer;éy

*Numbers given in the margin indicate the pagination in the original foreign ;

text.
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' 1. INTRODUCTION

The study of heat transfer in the stagnation point region of space vehicles
can be considered to be well advanced, at least as far as the laminar boundary
layer is concerned. A second critical region is less known, however, in the
hypersonic glider, namely the wing leading edge, where the prediction concerning
the heat transfer to the wall must make use of the analysis of the boundary
layer development in the three dimensional flow condition.

The theoretical results presently availsable concern essentially the case
of the slender infinite cylinder. Similarity solutions established by Reshotko
and Beckwith (ref. 1) for example, lead to simple formulas for the heat transfer
on the stagnation line of the leading edge.

The use however of the formulas for the infinite cylinder, for estimating
the heat flux at the leading edge of an actual wing, is questionable for small
distances from the nose, because an origin effect can seriously modify the
results. These formulas bring no more information on the evolution of the heat
transfer in the region where the nose is connected to the leading edge of the
wing, and where the pressure and the Mach number can undergo variations which
affect in a non negligible way the development of the boundary layer and its
essential characteristics.

A study concerning both the theory and the experiment was undertaken in
collaboration with the Marseilles Fluid Mechanics Institute and the National
Bureau of Aerospace Research and Studies, so that answers to these gquestions
could be found. The present paper extends and terminates the partial analysis
published before (ref. 2) and develops theoretical and experimental considera-

tions which were presented in Comptes Rendus of A.S. (refs. 3 and 6).




Experimentally, the program completed was about measurements on the
pressure distribution and heat transfer to the wall, along the leading edge
of two hypersonic wing models. We recall here the results obtained for different
sweep angles at Mach numbers 4, 7 and 10.

Theoretically, two calculation techniques were defined and employed. The
first one uses the solution to local equations of the boundary layer and local
similarity solutions. The second one uses a solution to the overall energy
equation. Both methods utilize the principle of prevalence of the longitudinal

flow over the transversal flow in the boundary layer.

2. EXPERIMENTAL
2.1 Test Conditions

2.1.0. The experimental study was made on three wing models of a [g
schematic hypersonic glider, having a spherical sector nose connected to a
leading edge of the same radius and two plane faces. The experimental program
predicted the pressure readings and the determination of the heat transfer at
the wall along the stagnation line (or "stop" line). The models were placed
at zero incidence and the leading edge and the skidding varied.

2.1.1. Tests at Mach Nos. 4 and 7. Model A has the following geometrical
characteristics: Sweep edge angle: 800; radius of the nose and the leading
edge: 7 mm (Mo = L) or 10 mm (M = 7). Its overall length is 160 mm (Mo = 4)
or 265 mn (Mo = 7).

At Mach number 4 the tests were conducted in the supersonic wind tunnel of
I.M.F.M. The generator temperature is then close to that of the wall (290° K
approximately). The test Mach number is Ms = 3.95. The generator temperature
is adjusted by means of a heater so as to end up having deviations of a few

degrees with respect to the temperature of the model (room temperature).




The principle involved in the determination of the transfer of temperaufEé
consists in recording, as a function of time, the rise in temperature of red
copper pills of thickness O.4 mm, inserted inside the brass model and insulated
from the latter. The derivative of the temperature with respect to time is
read at the initial time of the gust, while the wall temperature is still uni-
form. ©OSince the model is bulky, its temperature remains practically the same
during the gust. After having done these measurements for different values of
the ratio Tp/Ti’ an essentially linear curve can be drawn, of q/T, versus Tp/Ti’
The slope of this curve Ty = 'I'p measures the coefficient of flux density of

convected heat: h = —3%—— . The ratio Tf/‘l‘:.L can be determined on this slope

Tp - Ty
for q = 0. The sweep edge angles chosen are: 60°, 65°, 70°, 75°, 80°, 85%and
90°.

At Mach number 7 the tests were made in the hypersonic wind tunnel of
I.M.F.M. by Mr. R. Guillaume. The generator temperature was about 600°K, the
wall temperature slightly less than 300°K. The test Mach number was 7.03.

The principle involved in the determination of the heat transfer is the
same as at Mach 4. Tt is not possible however to change the ratio TP/Ti suf -
ficiently to obtain a good accuracy in the determination of Ty and h. The
thickness of the pills is here 3 mm. The sweep edge angles chosen are 650, 70°,
75° and 80°.

2.1.2. Tests at Mach Number 10. Model 8 of swept edge angle 750 is made
up of a spherical nose and of leading edge of radius 8 mm, and its overall [i
length is 107 mm.

It was tested in the hypersonic wind tunnel R3 of U.N.E.R.A. at Chalais-
Meudon, with a test Mach number of Me = 9.85. The generator temperature and

the wall temperature are on the average Ti = 1180°%K and TP = 29OOK.

)




The principle involved in the determination of the heat transferred con- |
sists in recording as a function of time the temperature rise of the wall
proper, and to deduce from it the heat transferred and the derivative dT/dt.
The model made for this has a skin of iron 1 mm thick, whose temperature is
measured by means of thermocouples. The derivative of the temperature is taken
at the initial time of the gust, a by-pass operation permitting to insure, from
this initial time on, the necessary generator temperature. The measured heat
fluxes are in this way relative to a uniform wall temperature equal to room

temperature.

2.2 Results

2.2.1. Pressure Distribution at the Wall. The experimental study of the
pressure was made essentially on the cylindrical part of the leading edge, with
the pressures on the spherical part being determined theoretically. A Newtonian
law of pressures, extended by a Meyer-Prandth expansion, has been used.

The pressure distributions measured on the stagnation (stop) line of the
leading edge are given in figure 1.

At Mach numbers 4 and 7 the lengths of the models are sufficient so that
the pressure goes aft to an approximately constant value, close to the pressure
that would be obtained for an infinite cylinder in incidence.

The evolution of the pressure at Mach 4, from the distribution observed on
the spherical part, occurs in a very regular way, the pressure tends rapidly
toward the uniform asymptotic value. The same does not hold at Mach 7; here
one can observe near the connection a more irregular evolution, with the
pressure going through a minimum which tends to move downstream when the sweep

edge angle increases.




0 nvﬁ

‘238ps JurpesT 2Y3 9B soanssadd T aanIdTg

9.

zL

b4
L > et g—
%, e JI/
LY4

‘ -
\WE

..u./
e TN
-l \\o:

w -

Too | e
| /s
€0
I
,0S =Y <N $'0
0




.59

"[V ToPOW] €0°L = *W 38 S8ABM OOUG

‘2 2an3dTg

i

e . amvesarsrant
"
e

04
Y4

S




This latter phenomenon is still more accentuated at Mach 10. The lengtﬁu?

of the model employed seems to be insufficient for the asymptotic value of the
pressure corresponding to the infinite cylinder to be reached.

2.2.2. Form of the Shock Wave and Entropy Layer. In order to [&
complement the information given by the measurements of pressure, the experi-
mental program has included in all cases an optical study of the shock wave
form. A shadowscopic method has been employed to determine with accuracy the
trace of the shock wave form. A shadowscopic method has been employed to
determine with accuracy the trace of the shock wave on the plane of symmetry.
The observation of highly accurate strioscopic lines was made in order to
obtain information on the flow mass per unit volume between the leading edge
and the shock wave.

Shown, by way of example, is the evolution of the shock wave against the
leading edge angle for Mex = 7. Two types of diagrams were adopted.

In the first type (upper figure) the shock wave form was drawn for a
leading edge assumed fixed. One observes gquite clearly, for all the
sweep edge angles used, that the trace of the shock wave, first superimposed
with that of a sphere, comes close to the leading edge, and that this is the
more pronounced the smaller the sweep edge angle. The separation distance is
observed to be minimum for a sweep edge angle of 65°. This distance seems
from then on to go to a constant value at infinity downstream. The fluctua-
tions of the pressure distribution in the neighborhood of the connection are
due to the reflection of the expansion waves coﬁing from the wall and
originating from the sonic point on the shock wave, on the stream surface
(strongly rotational flow), and on the sonic line. In other words these
fluctuations are due to the non-viscous effects which are due to the nose

bluntness.




In the second type we have shown the different shock waves, with a
leading edge no longer fixed but placed at the corresponding sweep edge angles.
This configuration permit;$%o observe the invariance of the sphere's shock
wave and also shows the displacement of the beginning of the influence of the
cylindrical leading edge.

The strioscopic pictures are shown in figures 3 and 4. They bring addi-
tional information by showing that a certain evolution §§~%§§h££§§¢§§§§%f§g%g§%3
place between the wall and the shock wave. Two regions are observed between the
shock wave and the obstacle. A region of low density shows up in black, is
observed near the connection, and expands when the sweep edge angle incresses.
It seems to identify the high entropy region corresponding to streamlines which
have crossed the shock wave near the region's apex. The other region shows up
in white and corresponds to streamlines which have crossed the oblique part of
the shock wave.

In order to better understand the effect,an exploration of pitot pressures
was made for Mach number 7 between the wall and the shock wave. Two examples
of results obtained at three abscissas are shown in figure 4 on top of the
corresponding strioscopic pictures. Since we don't know the static 12
pressures the interpretation of the curves obtained is difficult. Near the
coupling with the.spherical nose an important evolution of the pitot pressure
between the boundary layer edge and the shock wave seems tc confirm the crossing
of a region whose entropy gradient is very high. Far from the nose, however,

a much smaller variation seems to indicate an isentropic flow whose stagnation
pressure goes toward the pressure which predominates,downstream of the oblique

shock wave from the leading edge.



Figure 3.

Shock

waves at My = 9.85 [Model BJ.
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It seems therefore that a three-dimensional effect takes place here.

The streamlines, which have crossed the shock wave near the apex, go along
the leading edge first and then depart from it and go toward the planar faces
of the wing. The effect is greater, the higher the sweep edge angle.

2.2.3. Distribution of Heat Flux at the Wall. The results concerning the
heat transfers measured along the stagnation line of the leading edge are shown
in figures 4, 5 and 6. 1In all cases the experimental values are referred to the
value calculated at the stagnation (stop) point by means of the Fay and Riddell
formula.

At Mach number U4 a fairly constant heat transfer is obtained along the
cylinder, with its value decreasing when the edge angle increases.

The same does not hold at Mach number 7, as proved in reference 3, nor at
Mach 10. The heat flux at the wall undergoes in these cases a more irregular
evolution in the sphere-and-cylinder coupling region. This evolution seems
directly comnnected with, as that of the pressure, the above mentioned reflec-
tions, with the heat transfer going through a minimum at an abscissa which

corresponds approximately to that of the pressure minimum.

3. THEORETICAL STUDY OF THE LAMINAR HEAT TRANSFERS IN THREE-DIMENSIONAL FLOW
3.1. The Prevalence Principle and Form of the General Equations

Various authors, (refs, 4 and 5), have shown that a very important simpli-
fication can be made to the three-dimensionsl boundary layer when the boundary
layer velocity component transversal to the external streamline can be assumed
small compared to its longitudinal component. This principle of longitudinal
flow prevalence, which seems especilally applicable to wings of high edge angle,

permits to treat the case of the longituidnal flow equations, while it is not

12
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necessary to consider the transversal flow equations. Taking for logitudinal
axis the projection of the exterior streamline on the surface, the following
system of local equations is obtained:

equation of the log tudinal &

+@w --gp' T(}’

momentum (1a)

1 M, 3., 9T, 1-P i
pu ﬁ *? " " Tb‘( X-& * Pg ay energy equation (1v)
Y" (P ue) +s§- (Pw e) « 0 ) continuity equation (1c)

s means the measurements along the streamlines and e, a quantity proportional
to the distance between two neighboring streamlines,
The overall eguations cobtained by integration, along the boundary layer

thickness of the momentum and energy local equations, are:

< hea®s 1
2 -0-8 [ ” do ‘,. da '1";3], overall momentum equation (2a)
. . ,
LMy 9
y Y i - 'g-e "A[ u, ds "‘f)]: ds '1'::] overall emnergy equation (2b)
e %p

Note immediately that the prevalence principle permits to give the three
dimensional boundary layer a form identical to that which would be had by the
boundary layer of a body of revolution whose meridian ordinate would be e (s).
When the exterior flow of the perfect fluid is known the reduced width e of
the streamline pencil is in principle a given quantity of the problem. Any
theoretical treatment established for the flow of revolution is then usable

in the calculation of the three dimensional boundary layer development.

3.2. Method of Calculating the Heat Transfer to the Wall
3.2.1. Determination of the Streamline Divergence. We propose to es-
tablish methods of calculation based on the local equations and on the overall

energy equation, using the prevalence principle, with the essential goal beinﬂg”E

15



the prediction of the heat flux at the wall of wings having high edge zau:lgles,'wI
and especially along their leading edge.

For any method it is necessary to determine the term 1/p de/ds describing
the divergence of streamlines.

For any surface considerations based on differential geometry permit to

show that e (s) is a solution of the following differential equation

Ok

2 :
de '
-d-:z--q.('(«tkz--'s—l")n--(li (3)

where K is the overall surface curvature and k2 the geodestic curvature of the
streamline st the point under consideration. This latter curvature can be
evaluated, provided the distribution of the flow quantities at the edge of

the boundary layer is known

(k)

If we take 1/g de/ds = m(s)awe have

K {
4 g{-t‘fz-%%-kzz-x(o (5)

Equation (5) is of the first order in ¢. The right hand side is generally
not known analytically. A step-by-step construction process of streamlines

could permit however to make a numerical integration. We have then

‘s 1)
(sp ()4 [) oxe = 4202
{i O

where s, is the abscissa of a point where ®(s) is arbitrarily chosen. (The

function e(s) is found within a multiplicative constants)

16



In the case of interest to us the overall curvature K is zero on the
cylindrical part. The abscissa s; will be taken equal to that which corresponds
to the connection with the spherical nose. The stagnation (stop) line will be
assumed to be a mpnsingular streamline (k, = 0).

Equation (5) becomes
g*vz _‘2‘3_ (6)

ds on

On the spherical part we can take for e:e = sin s/R.
- Tlrlie“jnitial value of ¢ at the shoulder is in this way (‘)(a‘) - 59-?-&5— -
iégg;%ﬁA;;?generally not known analytically along the separation line. If Bkg/an
is identically zero, the streamlines near the separation line can be taken as
the geodesic lines originating from the stagnation (stop) point. This case can
be produced only near /\ = 90°, and was already studied in reference 6.

For the infinite cylinder we can establish the following relations on the

stagnation line

R do_ R dv
e ds u  dn (7)
%——"2 - (B-gv,2 (8)
n u_dn
s
These relations are met again at infinity, for the present case of ZQ

interest. At a finite distance it is necessary however to take into account
the origin effect imposed by the connection with the spherical nose, especially
in the presence of a pressure evolution. The study proposed in reference 2
uses the relation (7) at a finite distance and is therefore valid only

asymptotically.

17




3.2.2. Method of Local Similarity. As mentioned in the beginning of
this chapter, as soon as the prevalence principle is used and the function
e (s) known, any theoretical treatment worked out for the flow of revolution
can be employed. We have in this way presented in reference 6 the calculation
of the transfer for the case where the streamlines merge with the geodesics
originating from the point of impact at the edge of the boundary layer, by
projection on the surface. The calculation was done by extending the method
of Stine and Wanlass (ref. 7), applicable to asymmetrical flows. The method
is here extended to the case where e (s) is defined by Egquation (6).

The calculation proposed by Stine and Wanlass uses successively the
transformations of Mangler and Stewartson and reduces the problem to that of
incompressible plane flow. It is then possible to use the similar solutions
of the laminar boundary layer of the Falkner-Skan model. The fundamental
parameter permitting to establish the local correspondence is m = s/ue due/da
which becomes # and fi in each of the associated planar flows.

It is then assumed that, to the actual flow at every point, a correspondence
can be made with the iIncompressible planar flow, where the velocity is distributed
according to a low of a power of the abscissa, where the exponent is 1.

We have in this way, for the local coefficient of heat flux connected to

the wall
e 2 E oy, d=1,2 e
h'k-[‘ e wma (1 ‘L-l’] (%’;.o (9)

where (dB/dTDl¥=:O is the temperature gradient at the wall for the corresponding
m

incompressible planar flow.

s
A ]."2 ds
The parameters m/m and M/m are given by »" --i-—-_- .
e s

18




g3, 7 o
B 3=-1 2, 2F - - L.
(]
The reduced temperature gradient (dB/dﬂ)gr= 0 is tabulated for Zg
i

different ratios of Tp/Ti, and for distributions of wall temperatures which
can be proportional to a power of 3.

The heat transfer q can then be calculated if the recovery factor r is
known. The value has been taken equal to Pi/2 for P. = 0.7.

3.2.3, Method Based on the Overall Energy Equation. It was shown (ref 8)
that a very flexible method of calculation, based on a solution of the overall
momentum equation, permitted to predict with a reasonable degree of approxima-
tion the essential dynamic characteristics of a laminar or turbulent boundary
layer, for the case of moderate pressure gradients. The approximate method
employed here for the heat transfer calculation is the extension of that
technique to the overall energy equation. ‘

The fundamental hypothesis employed@ here in the dynamic problem is to
assume that the shape of the velocity and temperature profiles in the boundary
layer vary sufficiently little so that the friction coefficient may be expressed
by the flat plate relation as a function of the Reynolds number of the momentum
thickness. Using the concept of reference temperature, the relation employed

for the friction coefficient is

C -
g 0,205 9 e
d u ith -
2 (k%S "TPe e (20)

Mo

where g is Cf/CfI of the laminar flat plate, with R52 constant. g is obtained

from the mass per unit volume p¥* and from the viscosity u* which corresponds

19



to the reference temperature T*¥. It has been proposed to use, for this

temperature, the Monaghan relation, as follows
- ; . : -

where Tf is the athermal wall temperature having a corresponding recovery factor
r=F_1/2.

The same method of treatment is applied now to the overall energy equation,
considered as a differential equation of the energy thickness A. To integrate
the equation, one uses the relation which is an expression of the heat flux
at the wall as a function of the Reynolds number of the energy thickness,
starting from the properties of the flat plate.

For the laminar flat plate with constant wall temperature there exists a

constant ratio between the heat flux coefficient and the fraction coefficient

c -3
I'L #%e ]
g-tn/ 2
From the relation (10) which is an expression of Cy as a function /10

of R52, one deduces easily, following integration of the overall equations of
the flat plate, the relation for the heat flux at the wall as a function of

the Reynolds number of the energy thickness.

' T =T, 2
a_ 8 - o A
- = 8 = 0.2205 S o
Fo Ve % Tie ( Pe s A ) with L Tig ) (12)
Me

This relation transforms the overall energy equation (2b) into a linear

differential equation of order one for AE.




The integration is performed generally from the point s, where the

energy thickness is known. It yields the following energy thickness

$
(Af’a u, e)z = (& Co Yo e):o +j$.2 BP, Mo Ye ot ds% . (13)

The heat flux at the wall is deduced from (13) using (12).
In the problems of interest the starting point of the iIntegration will be
the stagnation point of the forebody. The expression for the heat flux ratio

at the running point over the stagnation point (stop point) is

B
. B
i i
o [ du_
2 |l )y

3.3. Application to the Leading Edge and Comparison with Experiment

Two regions can be distinguished when applying the calculation to the
cases under consideration.

A first region is the spherical sector which makes up the nose whose flow

and heat transfer are those of a forebody of revolution. The reduced width of

the streamline pencil is here simply proportional to the distance from the wall

to the axis which carrieg the stagnation point and the center of the sphere.

A second region starts from the connection with the cylinder and is the
leading edge itself. The problem here is that of a three-dimensional flow
having pressure gradients determined by experiment. Taking into account the
observations made previously on the origin effect, there is no other [ll

possibility available than to take in the calculation for the stagnation

21




pressure at the edge of the boundary layer, the stagnation pressure p‘i down-
stream of the right shock detached from the nose. In all cases the experimental
curves for the pressure are used in the heat flux calculation.

In reference 2 an approximate relation was used for the divergence of the
streamline, as a function of the normal gradient of the velocity and assuming

a8 newtonian transversal pressure distribution

R do R dv o 1 [2 (1-Pe)]V2,
° ds ug dn Mg "~ Pe

The geometrical study of Section 3.2.1 shows that this relation is in fact
rigorous only in the case of a pure cylinder, i.e. at a great distance from the
nose.

In the region where the pressure varies, and also close to the connection,
the determination of the divergence of streamlines must involve an integration
of Equation (6). This integration was made, taking for Bkg/anjthe approximate

value

dkp - GJ&._ EI.)z
?n Ug dn

which is valid rigorously in the case of a purely cyiindrical flow.

On the other hand dv/dn was calculated, under the assumption of a trans-
versal newtonian distribution, from the pressure measured on the stagnation
line.

The initial value taken at the shoulder, imposed by the preceding flow

of revolution is, as shown in Section 3.2.1.

R de = A.
[ e ds ]s=s1 cote

22



At Mach number 4 the fact that the pressure and heat transfer are constanf
along most of the length of the leading edge has led to using only an asymptotic
form of the integral method, namely the form relative to a cylindrical flow at
constant pressure and with stagnation pressure p‘i. The corresponding dashed
curves drawn on the right of the experimental curves of figure 5 are in fair
agreement with the measured values.

At Mach number 7 the calculations have made use of the local and overall
methods for the pressure gradient of the leading edge. The corresponding
curves, drawn in figure 5 show that each of the two methods shows fairly well
the evolution which is experimentally observed, with the flux going through
a minimum in the region affected by the connection. It should be noted however
that the similarity method involves directly and locally the gradient of the
exterior velocity as well as the streamline divergence. The application of
this method becomes complicated for wings of average leading edge angle Z;g
in the region affected by the connection, because of the inaccuracy in the
distribution of Mach nunbers determined from the pressure at the wall.

Figure 6 shows the results obtained from the application of the integral
method to Mach number 10. The method always predicts a minimum of heat flux
which approximately corresponds to that of the pressure. A more accurate
determination of the streamline pencil width seems in fact to lead to results
generally in better agreement witﬁfgxperiment than. those obtained in reference 2.

At high edge angles the experiment and the calculation are in agreement in
the whole length of the model. At edge angles of 50° and 60° the experiment is
in fairly good agreement with the calculated value but later yields a heat flux
which becomes smaller and smaller than the calculated value. The heat flux seems

to go toward a new asymptotic value which can be determined by applying the

23



integral method to a uniform cylindrical flow whose stagnation pressure has
the value pi2 of an oblique shock parallel to the leading edge. The results
from observations already made on entropy gradient effects due to curvature

of the shock wave should be compared.

k. CONCLUSIONS

A theoretical and experimental study of the flow and heat transfer of
hypersonic wing leading edges placed under different angles, leads to the
following essential conclusions, for Mach numbers 4, 7 and 10:

An appreciable evolution of Mach number and pressure at high velocity is
observed along a real wing leading edge, in a region affected by the connectian
of the forebody with the leading edge proper. Strong variations of heat transfer
to the wall are connected with this evolution.

In order to predict the heat transfer at the wall it is necessary to take
account of the pressure gradignt effects in the development of three-dimensional
boundary layer. The application of the principle of prevalence permits to
establish methods of calculation which lead at high sweep edge angles to results
which are inressonable accord with experiments.

The experiments performed at high Mach number and at an average sweep edge
angle display, however, an influence by the entropy gradients due to the
curvature of the shock wave, which in turn leads to a variation of the stag-

nation pressure at the edge of the boundary layer.
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